
HASSACHWISTTS INST OF TECH CAIM HNXCEOSYT
RESERCN CENTER N J DALLY NOV 87 VSLI-MEN-8?-421

WICLSSIFIED NIUI4-WN-C-W22 F/I 25/5 N

MErNNEN uui

II,, II I il III !

, I-.-.

II .1...°o111 -
A-,, ,II - - ., , . -, " ... - . . -,. . .., ' " , -..,.: o . ..- -.,, ., .1 .-. . .1. ...1 ,. -_.-___.___7 .U.- ..-

S. ,, = .,,: . - e - . ," ,- ,, , .' . "'' " " ". . . ". . ." " " " " " - - " " ", ' "' - - '

FIlg]ILE COPY

SMASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

' (Y) VLSI Memo No. 87-421
' November 1987

A FIN E -G R A IN , M ES SA G E -PA S SIN G P R O C E SS IN G N O D E

" ~~William J. Dally ...

A' A 61

CN

~Abstract

~This paper describes a processing node for a fine-grain message-passing concurrent
i computer. The node consists of a processor, a communication u~nit, and a memory. To"
~reduce the overhead of message passing and task switching to 5 s, the node incorporates a
~send instruction, a fast communication system, hardware message buffering and dispatch.

... and a general translation mechanism. These mechanisms work together to implement a
"-.,.fine-grain programming system.

(V VS MmoN.-7-2

No 'vembe r ir

DiWtiibution UJ.lhDiaiy

II - -... ,errs ,Massachusetts Carmhr,do~e Tetenho)np '
T Resparc r i C esner pnstitete fassachufset-sgrileaep..n .cr e

,'Room 39-321 ot Technology 02 1 9

'_1

-1o

CO A-- 'Y

, '; - :e(of/ _

co' y * . f. . 1'

.,, ~ i -.:. I '

LI}
Acknowledgements

This work was supported in part by the Defense Advanced Research Projects Agency under
contract numbers N00014-80-C-0622 and N00014-85-K-0124, and by a National Science
Foundation Presidential Young Investigator Award with matching funds from General

* * Electric Corporation.

iI.

Author Information

Dally: Artificial Intelligence Laboratory and Laboratory for Computer Science, MIT,
Room NE43-419, Cambridge, MA 02139, (617)253-6043.

5,

Copyright (c) 1987, MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy is for
private circulation only and may not be further copied or distributed, except for
government purposes, if the paper acknowledges U. S. Government sponsorship.
References to this work should be either to the published version, if any, or in the form
"private communication." For information about the ideas expressed herein, contact the
author directly. For information about this series, contact Microsystems Research Center,
Room 39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

.. d .,:.-,- -... .- - - -.., .:,4 ..-. ,

A Fine-Grain, Message-Passing Processing Node'
William J. Daily

". Artificial Intelligence Laboratory and
Laboratory for Computer Science

Massachusetts Institute of Technology

Abstract

This paper describes a processing node for a fine-grain message-passing concurrent
computer. The node consists of a processor, a communication unit, and a memory.
To reduce the overhead of message passing and task switching to 5,us, the node
incorporates a send instruction, a fast communication system, hardware message
buffering and dispatch, and a general translation mechanism. These mechanisms
work together to implement a fine-grain programming system.

1 Introduction

The natural grain size of many parallel algorithms is about 20 instructions. To

fully exploit the concurrency in such algorithms, we must be able to efficiently
execute tasks of this length. The message transmission and reception overhead of
existing systems is in excess of 200 instruction times. With such a large overhead,
these systems must execute tasks at the artificially large grain size of about 1,000
instructions. If we can reduce the overhead and operate at the natural grain size,
we can effectively apply 100 times as many processing elements to the problem.

At MIT we are developing the J-Machine (12], a fine-grain message-passing concur-
rent computer that will efficiently execute programs with 20-instruction tasks. The
J-Machine is consists of a number (initially 4096) of possibly different processing
nodes that communicate over a high speed network. The network is implemented
using a Network Design Frame (NDF) [101, a communication controller integrated
into the pad-frame of a chip. The center of the NDF chip is used to implement
a node-specific processor. The primary processing node of the J-Machine consists
of an NDF wrapped around a Message-Driven Processor (MDP) (9], a symbolic
processing element.

A I-Machine constructed from MDP/NDF processing nodes combines features of
both message-passing and shared memory machines. Like the Caltech Cosmic Cube

'The research described in this paper wa. supported in part by the Defenae Advanced Re-
searrh Projects Agency under contracts N00014-80-C-0622 and N00014-85-K-0124 and in part by
a National Science Foundation Presidential Young Investigator Award with matching funds from
General Electric Corporation.

'S

a,.a

[25], the Intel iPSC [18], and the N-CUBE [21], each node of the J-Machine has a
local memory and communicates with other nodes by pasing messages. The J-
Machine can exploit concurrency at a much finer grain than these early message
pawing computers. Delivering a message and dispatching a task in response to the
message arrival takes 5ps on the J-Machine as opposed to 5ms on an iPSC. Like the
BBN butterfly [31 and the IBM RP3 (22] the J-Machine provides a global virtual
address space. The same ID (virtual addresses) are used to reference on and off
node objects. Like the InMOS transputer [17] and the Caltech MOSAIC [20] the
MDP/NDF is a single chip processing element integrating a processor, memory, and
a communication unit.

The next section introduces the problems associated with fine-grain concurrent com-
putation by means of a concurrent factorial program. In Section 3 the mechanisms
provided by the MDP/NDF to support this style of programming are presented.
The SEND instruction, message delivery, message buffering, scheduling and dispatch-
ing, and the MDP translation instructions are described. This section also discusses
some of the features we didn't implement and the reasons why they were abandoned.
Section 4 illustrates how the MDP/NDF mechanisms work together to execute the
factorial program from Section 2.

2 The Problem

Concurrent programming is often considered harder than sequential programming
because of partitioning, communication, and synchronization. If a machine is pro-
granmed at a very low level, with the programmer explicitly specifying the partition
and the communication, concurrent programming can indeed be a difficult task, and
the programs produced are rarely portable. However, with suitable programming
abstractions [11], concurrent programming need be no harder than sequential pro-
gramming.

Consider the factorial program shown in Figure 1. The program calculates n! by
recursively dividing the interval of integers to be multiplied. To compute n!, the
depth of the recursion is 1og 2 n. This program is patterned after one by Theriault
[29] p. 33 . and is written in Concurrent Smalltalk (CST) [51, a concurrent pro-
gramming language based on Smalltalk-80 [14]. A description of the programming
language is beyond the scope of this paper.

The computation graph for this program is shown in Figure 2. Each node of this
graph represents a context object created to hold the state of one activation of
the rangeProduct: method. A message from the parent node in the tree creates
the context, sends two rangeProduvt messages, and then svspends awaiting the
replies. This initial activation executes 16 working2 instructions for internal nodes.

2 These instruction counts consider only useful code. Memis'e reception ad address translation

2

:'- , "I" . " . " - 2 " ." " - . '"" 4 , '' w ' . '.' ' ' ' * " J '. ¢
' ' ' ' ' ' '

. ',' ' ' - - -

l* b ,,.,., .e .-- - - - - .. w. . . --" . -. , ., .-' , -- "...

(Integer) factorial
1. rangeProduct: self

(Integer) rangeProduct: n
I aid I
self = a ifTrue: [-self].
aid <- self + n // 2.

(self r.ngeProduct: mid) (mid.1 r'angaProduct: n)

Figure 1: A Factorial program in Concurrent Smailtalk. This program executes an
average of S assembly instructions in response to a message.

',.

Leaf nodes execute only 6 instructions to send their argument back. The first reply
message resumes the context, saves its argument, and suspends (4 instructions). The
second reply performs the multiply and sends a reply up the tree (8 instructions3).
The average number of working instructions executed in response to a message is
_8.

'S.

Operating at a fine-grain, in addition to exploiting more concurrency, also simpli-
fies communication. Using the natural partition of the program, communication is
implicitly specified by interactions between the named objects in the program. Syn-
chronization is also implicit. The arrival of a message containing the required data
schedules execution. For example, in Figure 1 the expression (self rangeProduct:
mid) causes a rangeProduct: message to be sent. The arrival of this message
schedules the execution of the method.

In some concurrent programming systems, communication is made difficult by non-
uniform naming: local objects are referenced differently than non-local objects.
In the Cosmic Kernel [28], for example, local objects may be referenced through a
pointer, while global objects require an explicit message send and receive. Providing
a global address space allows objects to be referenced via a single mechanism (the
virtual address) regardless of their location, and relieves the programmer of the
bookkeeping required to keep track of node numbers. Programs become both easier
to write and more portable.

The logical partition of most programs is fine-grained (8 word objects, 20 instruction
methods). Unifying this logical partition with the physical partition of a program

overheads have been f.ctored out.
3If the multiply exceeds the machine precision additional time is required to perform & bignum

multiply.

3

..

I rp

I'm

'V.

Figure 2: Computation graph for the factorial program. -

simplifies programming and results in greater concurrency. To efficiently execute
the resulting fine-grain program, a machine must have fast communication, low
message reception overhead, and low scheduling overhead. To simplify communica-
tion between named objects, a machine must support a global address space. The
mechanisms used by the J-Machine to meet these requirements are described in the
next section. While we intend to use these mechanisms to execute object oriented
[27] or actor [1] (2] programs. They are the same mechanisms that are required to "
support shared memory models of computation such as Multilisp [15].

3 Mechanisms

The following sequence of actions is involved in sending and receiving a message.

1. The originating node translates the ID (address or name) of the destination
object into a destination node number.

2. The originating node sends the message.

3. The network transmits the message to the destination node.

4. The destination node receives the message.

5. The destination node decides whether to execute or buffer the message.

6. If the decision is to buffer, the node buffers the message.

4

2...2

7. Eventually, the message is executed and the node translates the receiver ID
and message selector into a receiver address and a method address.

8. The method is executed.

9. The method suspends and transfers control to the next message.

On a 4K node J-Machine, this sequence of operations takes 5ps4 . The mechanisms
implemented in the hardware of the system to accelerate this operation include.

1. A send instruction (2).

2. A fast communication mechanism, the NDF [101 (3).

3. A message unit that controls the reception and buffering of messages (4 and
8).

4. A scheduling mechanism that (5) decides when to preempt execution and (9)
selects a message to be executed when a method suspends.

5. A general translation mechanism (1 and 7).

Send Instruction

The MDP injects messages into the network using a send instruction that transmits
one or two words (at most one from memory) and optionally terminates the message.
The first word of the message is interpreted by the network as an absolute node
address (in x,y format) and is stripped off before delivery. The remainder of the
message is transmitted without modification. A typical message send is shown in
Figure 3. The first instruction sends the absolute address of the destination node
(contained in R0). The second instruction sends two words of data (from RI and R2).
The final instruction sends two additional words of data, one from R3, and one from
memory. The use of the SENDE instruction marks the end of the message and causes
it to be transmitted into the network. In a Concurrent Smailtalk message, the first
word is a message header, the second specifies the receiver, the third word is the
selector, subsequent words contain arguments, and the final word is a continuation.
On our register-transfer simulator, this sequence executes in 4 clock cycles.

Early in the design of the MDP we considered making a message send a single
instruction that took a message template, filled in the template using the current
addressing environment, and transmitted the message. Each template entry spec-
ified one word of the message as being either a constant, the contents of a data
register, or a memory reference offset from an address register (like an operand

4 This estimate assumes that all caches hit.

- 5

SEND 10 seud net Address
SEND2 11.12 ;header and receiver
SEND29 R3,(3,A3J selector and continuation - cd ass.

Figure 3: MDP assembly code to send a 4 word message uses three variants of the
SEND instruction.

descriptor). The template approach was abandoned in favor of the simpler one or
two operand SEJ instruction because it did not significantly reduce code space or
execution time. A two operand SEN instruction is nearly as dense as a template
and can be implemented using the same control logic used for arithmetic and logical
instructions.

Message Communications

I-.

Communication between nodes is performed by the NDFs on the nodes along the
route. The NDF performs routing, buffering, and flow control to deliver messages

.5.

in a 2-D mesh connected network. These functions are performed entirely within
the NDF. No memory bandwidth or CPU time on intermediate nodes is used by
message delivery. NDFs are connected by 9-bit communication channels that are
expected to operate at 50MH2 for a throughput of (45Mbits/see). The propagation
delay through this self-timed router is 2Ons. Wormhole routing (71 [8] [19] is used
to give an idle-network latency of 201)+80L ns, where D is the distance in channels
and L is the message length in 36-bit words. In a 4096 node machine, for example,
the average distance is 42 and the worst case distance is 126 for respective latencies
of 1.3s and 3 ps respectively. In [71 it is shown that these latencies increase only
slightly as network traffic is increased to within 25% of saturation.

Figure 4 shows how the network of NDFs delivers a message in the J-Machise. The
menage is injected into the network at node (1,5). The source NDF converts the
absolute destination address (4,1) into a relative address (3,-4). The message is then
routed in the positive X direction with the head flit (flow control digit) containing
the relative X address decremented at each stage. Message delivery is pipelined with
each flit occupying one stage of the pipeline. At node (3,5), the relative X address
is decremented to zero. Upon seeing this zero, Node (4,5) strips the X address and
begins routing the message in the negative Y direction.

At node (4,3) the head of the message blocks for two cycles (because the channel

.P -

of 13 nd / aresectiely In[7]it s shwn hatthee ltences ncraseonl

sligtlyas etwok taffc isinceasd towitin 5% o sauraion

lime

0 1 2 3 4 5 6 7 8 9 10 11 12 13
(1.5) B -4 I C- I

2.5 -4 A B C
1 43.5 1 A B

Node 4.
1-4 A

i

4.4 3 A 1 8 3IC C
(4.3) 1-2 1-41AI- 1A AIBIBICI C I

4,3(4.2) i-lAI

14.11 1 n I A I B I C I

Figure 4: The NDFs deliver a message using wormhole routing. Buffering com-
presses the message when blockage occurs.

to (4,2) is in use). The tail of the message continues to advance compressing the
message in the NDF buffers. After two network cycles5 the blockage is removed and
the entire message proceeds to the destination (4,1). The relative Y address (now
0) is stripped and the remainder of the message is delivered to the node.

A block diagram of the logic that performs this routing is shown in Figure 5. The
NDF contains two priority levels that implement logically separate networks sharing
the same set of physical wires. Figure 5 shows only one level. Each level consists of
four direction data paths, one for each of the cardinal directions (+X, -X, +Y, -Y).
A message from the processor (P channel) has its address converted from absolute
to relative by subtracting the local node address. A two-way switch then selects
the proper direction by examining the sign bit of the resulting relative X address.
Each direction data path has two inputs (the direction input and the preceding
dimension) and two outputs (the direction output and the next dimension). It
arbitrates between the two inputs and performs a zero check on the head flit to
select the appropriate output. If the direction output is selected, the head flit
is incremented/decremented. The head flit is stripped if the dimension output is
selected.

Partitioning the router into separate direction data paths significantly reduces both
the area and delay as compared to previous designs based on a central crossbar
switch [6]. In the most common case (a message continuing in the current direction)
a flit sees only a single 2 way switch between the input and output. Additional

SThe network in completely self-timed - there is no clock. The channel cycles are aligned here
for purposes of illustration only.

7

.-

,..;

*. p.- 1 -.- '-..

p,

+- -t

Figure 5: The NDF consists of separate dimension data paths that forward a mes-
sage in its current direction or switch it to the next dimension.

switching is only required when a message switches dimensions.

Absolute integer node addressing was selected to simplify passing node numbers
through the network - viz. with absolute addressing a node's address is the same
on each node. Relative integer addressing is used internally by the NDF. Rather
than converting from absolute addressing at the input to the network, we considered
using relative addresses everywhere and adjusting them on-the-fly as they passed
through the network. The incrementers and decrementers required to perform this
adjustment are already in the NDF data paths. However, it proved cumbersome
to detect which flits passing through the network contained network addresses in
a particular dimension. We also considered representing addresses as polynomials
over GF(2) and using a Galos incrementer [4] (the combinational equivalent of a
linear feedback shift register) to adjust aeiresses. This approach had the advantage
of requiring only a single gate delay to perform an increment/decrement however
handling polynomial addresses proved difficult for some parts of the system software.

Message Reception

Message reception overhead is reduced to : lps by buffering, scheduling, and
dispatching messages in hardware. The MDP maintains two message/scheduling
queues (corresponding to two priority levels) in its on-chip memory. As messages
arrive over the network, they are buffered in the appropriate queue. The queues
are implemented as circular buffers. It is important that the queue have sufficient

8

' %

p

%MOVE D', A31,RO ;got method id i

XLATE RO,AO ;translatce t:o address descript~or
RES 2 ;t.ransfer control to method

," Figure 6: MDP assembly code for the CALL message. "

performance to remove words from the network as they arrive. Otherwise, messages
would backup into the network causing congestion. To achieve the required perfor-

,, mance, special addressing hard are is used to enqueue or dequeue a message word e
-', with wraparound and full/empty check in a single clock cycle. A queue row buffer
',e allows enqueuing to proceed using one memory cycle for each four words received. "
' " Thus a program can execute in parallel with message reception with little loss of
, memory bandwidth. "

' i The message queues schedule the tasks associated with messages. At any point
in time, the MDP is executing the task associated with the first message in the.'

" highest priority non-empty queue. If both queues are empty, the MDP is idle - viz.,"
h, executing a background task. Sending a message implicitly schedules a task on the "
', destination node. The task will be run when it reaches the head of the queue. This .
7 @simple two-priority scheduling mechanism removes the overhead associated witha

Sa

.-. software scheduler. More sophisticated scheduling policies may be implemented on
Stop of this substrate.

Messages become active either by arriving while the node is idle or executing at
a lower priority, or by being at the head of a queue when the preceding messagesuspends execution. When a message becomes active, a hander is dispatched in
one clock cycle. The dispatch forces execution to a physical address specified in

the message header. This mechanism is used directly to process messages requir-
ing low latency (e.g., combining and forwarding). Other messages (e.g., remote
procedure call) specify a hander that locates t required method (using the trans-

lation mechanism described below) and then transfers control to it. For example, .the call hander is shown in Figure . The first instruction gets the method ID
(offset 1 into the message). Hardware initializes register A3 to contain an address
descriptor (base/length) for the current message. The next instruction translates
the method D into an addresi desript m or the method. If the translate faults,
because method is not resident or the descriptor is not in the cache, the fault oan-
hdler fies the problem and reschedules the message. If the translation succeeds, the

final instruction (resume) transfers control to the method.

xAn early version of the MDP had a fixed set of message handlers in microcode.
SmAn analysis of this code showed that it was limited by memory accesses and there

D9

sotaesceue.Moespisiaechdln plce.ayb-mleetdo
topofths ubtrte

C. : . -- ; " G < .. -- - -- " -; " - -; -.- .- .. ?'

'So-.

was little performance advantage in implementing it in microcode. The mnicrocode
was eliminated, the handlers were recoded in assembly language, and the message
opcode was defined to be the physical address of the handler routine. Frequently
utsed handlers are contained in an on-chip ROM. This approach simplifies the control
structure of the machine and gives us flexibility to redefine message handlers to fix
bugs, for instrumentation, and to implement new message types.

The message queue originally allocated storage from the heap for each incoming
message. This eliminated the need to copy messages when a method suspended for
intermediate reqnllts However, the cost of allocating and reclairng st.7rage ,r caCh
message proved to be prohibitive. Instead, we settled on the preallocated circular
buffer. When a method suspends for intermediate results, message arguments are

~copied into a context object. The overhead of this copying is small since the context
must be created anyway to specify a continuation and to hold live variables. The
fixed buffer also provides a convenient layering. Priority zero messages are sent
when the memory allocator runs out of room and priority one messages are sent
when the priority zero queue fills.

Translation

The MDP is an experiment in unifying shared-memory and message-passing parallel
computers. Shared-memory machines provide a uniform global name space (address
space) that allows processing elements to access data regardless of its location.
Message-passing machines perform communication and synchronization via node-to-
node messages. These two concepts are not mutually exclusive. The MDP provides
a virtual addressing mechanism intended to support a global name space while Using
an execution mechanism based on message passing.

The MDP implements virtual addressing using a very general translation mech-
anism. The MDP memory allows both indexed and set-associative access. By
building comparators into the column multiplexer of the on-chip RAM, we are able
to provide set-associative access with only a small increase in the size of the RAM's
peripheral circuitry.

The translation mechanism is exposed to the programmer with the ErrM and xLATE
instructions. These instructions make use of the set-associative mechanism of the
NfDP memory. EIME ga,gb associates the contents of IRa (the key) with the con-
tents of Rb (the data). The association is made on the full 36 bits of the key so
that tags may be used to distinguish different keys. ILATE Pa,Ab looks up the
data associated with the contents of Ra and stores this data in Ab. The instruction
faults if the lookup misses or if the data is not an address descriptor. ZU.TE Ra, Rb
can be used to lookup other types of data. This mechanism is used by our System
code to cache ID to address descriptor (virtual to physical) translations, to cache
ID to node number (virtual to physical) translations, and to cache class/selector to

10

a-.

LJ

LA. ,

S

MOVE [1,13 1 ,RO ; Receiver ID
XLATZ R0,A2 ; Receiver descriptor
MOVE 0,A23,RO ; Receiver object header
AND RO,CLASSMASK,RO ; Isolate class

OR RO,[2,A3],RO ; combine w/ selector
XLATE RO,AO ; get method

RES 2

Figure 7: Send handler translates class and selector into address descriptor for
method and transfers control.

address descriptor (method lookup) translations.

Tags are an integral part of our addressing mechanism. An ID may translate into an
address descriptor for a local object, or a node address for a global object. The tag
allows us to distinguish these two cases and a fault provides an efficient mechanism
for the test. Tags also allow us to distinguish an ID key from a class/selector key
with the same bit pattern.

- Most computers provide a set associative cache to accelerate translations. We have
taken this mechanism and exposed it in a pair of instructions that a systems pro-
grammer can use for any translation. Providing this general mechanism gives us the
freedom to experiment with different address translation mechanisms and different
uses of translation. We pay very little for this flexibility since performance is limited
by the number of memory accesses that must be performed.

4 Fine-Grain Programming

To illustrate how these mechanisms work together to execute a concurrent program
recall the factorial example from Section 2. When the factorial message is received
it is immediately buffered. When the message becomes active, control is dispatched
to the SEID handler. Shown in Figure 7, this handler forms a key from the class
of the receiver and the message selector and looks up the associated method using
the XLATE instruction. After executing 7 instructions, control is transferred to the
factorial method for class Integer.

MDP assembly code for the factorial method is shown in Figure 8. This code
performs no computing. It reformats its message for the first rangeproduct and

11

I,.

'.
J

NOTE 11 ; receiver is I
CALL IDTO-.ODE ; translate to node number in RO
SEND RO send address

', pC SEII).-.ADER

SEND2 R0,R1 ; send header and receiver

DC RANGE-PRODUCT ; send selector
5-. SEND R0

SEND C1,133 ; &end arguazoa
SENDS t3,A3J ; continuation

SUSPEND

Figure 8:

transmits it. Thus it is a good indicator of the overhead associated with sending
a message; this 12 instruction sequence takes 18 clock cycles (estimated) to send a
five word message. The total time from factorial message in to rangeProduct:
message out is 30 clock cycles (1.5ps on a 20MHz MDP).

This code uses continuation pasing to return its result. The factorial code does not
create a context to await the result of the rangoProduct:. Instead, it passes the
continuation (where to reply to) from its message in the rangeProduct: message.
The rangeProduct method then returns to the original sender.

The rangoProduct: code (not shown) creates a context to await the results of its
two message sends". The ID of this context is included in the continuation field
of each of these messages. After the messages are sent, a SUSPEND instruction is
executed to pass control to the next message in the queue while awaiting the replies.

When the first reply arrives, it stores its value in the context and tests for the
presence of the other reply value. Finding that value absent, execution is again
suspended. The arrival of the second reply reactivates the context, stores its value,
and (finding the other result present) performs the multiply and sends the result
in a reply message to its continuation. The scheduling of operations during this
combining is performed by dataflow. As soon as both operands are present, the
operation is performed.

6A four-wstmction inline oequence allocate, this context off & free list.

12

% ,. -

p.i

S Conclusion

The MDP/NDF processing node efficiently executes fine-grain concurrent programs
by providing mechanisms that reduce the overhead of message-passing, translation,
and context switching to -_ 5ps. Reducing overhead to a time comparable with the
natural grain size of many concurrent programs allows the programmer to exploit
all of the concurrency present in these programs rather than grouping many grains
together - reducing the concurrency to improve the efficiency.

The MDP provides very general hardware mechanisms that can support many dif-
ferent concurrent programming models including conventional message-passing [28],
actors [1] [2], futures [15], communicating processes [16], and dataflow [13]. All
of these programming models require the same execution mechanisms: communi-
cation, synchronization, and translation. Specializing a machine for a particular
model of computation results in only a small increase in performance.

At the time of this writing the NDF design is complete and a chip has been submit-
ted for fabrication. Instruction and register transfer level simulations of the MDP
have been written and used to test the architecture. Transistor level design, and
artwork design for the MDP are underway.

There are many promising directions for future research. The mechanisms de-
scribed here efficiently execute concurrency at a grain size of 5ps. Many numerical
programs, however, have potential concurrency at the level of single operations. Ar-
chitectures must be developed that can exploit this concurrency without incurring
the overhead of message delivery or synchronization.

Another critical problem is the development of (communication, processor, and
memory) resource management policies for concurrent operating systems. It is
quite easy to write a program with sufficient concurrency to swamp any concurrent
machine. A concurrent operating system must provide a means to throttle back
such massively concurrent applications to match the concurrency to the available
resources.

Acknowledgement

The following MIT students have contributed to the work described here: Linda
Chao, Andrew Chien, Stuart Fiske, Soha Hassoun, Waldemar Horwat, Jon Kaplan,
Michael Larivee, Paul Song, Brian Totty, and Scott Wills.

I thank Tom Knight, Gerry Sussman, Steve Ward, Dave Gifford, and Carl Hewitt
of MIT, and Chuck Seitz and Bill Athas of Caltech for many valuable suggestions,
comments, and advice.

13

%II

7-z

References

((1] Agha, Gul A., Actors: A Model of Concurrent Computation in Distributed
Systems, MIT Press, 1986.

[2] Athas, W.C., and Seitz, C.L., Cantor Language Report, Technical Report
5232:TR:86, Dept. of Computer Science, California Institute of Technology,
1986.

[3] BBN Advanced Computers, Inc., Butterfly Parallel Processor Overvie, BBN
Report No. 6148, March 1986.

[4] Blahut, Richard E., Theory and Practice of Error Control Codes, Addison-
Wesley, 1983, pp. 65-90.

[5] Dally, William J., A VLSI Architecture for Concurrent Data Structures,
Kluwer, Hingham, MA, 1987.

[6] Dally, William J. and Seitz, Charles L., "The Torus Routing Chip," J. Dis-
tributed Systems, Vol. 1, No. 3, 1986, pp. 187-196.

[7] Dally, William J. "Wire Efficient VLSI Multiprocessor Communication Net-
works," Proceedings Stanford Conference on Advanced Research in VLSI,
March 1987, pp. 391-415.

[8] Dally, William J. and Seitz, Charles L., " Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks," IEEE Transactions on Comput-
ers, Vol. C-36, No. 5, May 1987, pp. 547-553.

[9] Dally, William J. et.al., "Architecture of a Message-Driven Processor," Pro.
ceedings of the 14'h Symposium on Computer Architecture, June 1987, pp.
189-196..

[10] Dally, William J., and Song, Paul., "Design of a Self-Timed VLSI Multicom-
puter Communication Controller," To appear in, Proc. ICCD-87, 1987.

[11] Dally, William J., "Concurrent Data Structures," Chapter 7 in [26].

[12] Dally, William J., "The J-Machine: A Concurrent VLSI Message-Passing
Computer for Symbolic and Numeric Processing," to appear.

[13] Dennis, Jack B., "Data Flow Supercomputers," IEEE Computer, Vol. 13, No.
11, Nov. 1980, pp. 48-56.

[14] Goldberg, Adele, and Robson, David, Smalltalk-80, The Language and its
Implementation, Addison-Wesley, Reading, Mass., 1983.

[15] Halstead, Robert H., "Parallel Symbolic Computation," IEEE Computer, Vol.
19, No. 8, Aug. 1986, pp. 35-43.

14

A'

J: . _ ,.; -- .. % ;. .. ;.,... ..

[16] Hoare, C.A.R., "Communicating Sequential Processes," CACM, Vol. 21, No.
8, August 1978, pp. 666-677. 4

[17] Inmos Limited, IMS T424 Reference Manual, Order No. 72 TRN 006 00,
Bristol, United Kingdom, November 1984.

[18] Intel Scientific Computers, iPSC User's Guide, Order No. 175455-001, Santa
Clara, CA, Aug. 1985.

[19] Kermani, Parviz and Kleinrock, Leonard, "Virtual Cut-Through: A New
Computer Communication Switching Technique," Computer Networks, Vol
3., 1979, pp. 267-286.

[20] Lutz, C., et. al., "Design of the Mosaic Element," Proc. MIT Conference on
Advanced Research in VLSI, Artech Books, 1984, pp. 1-10.

[211 Palmer, John F., "The NCUBE Family of Parallel Supercomputers," Proc.
IEEE International Conference on Computer Design, ICCD-86, 1986, p. 107.

[221 Pfister, G.F. et. al., "The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture", Proceedings ICPP, 1985, pp. 764-771.

[23] Seitz, Charles L., "System Timing" in Introduction to VLSI Systems, C. A.
Mead and L. A. Conway, Addison-Wesley, 1980, Ch. 7.

[24] Seitz, Charles L., et al., The Hypercube Communications Chip, Display File
5182:DF:85, Dept. of Computer Science, California Institute of Technology,
March 1985.

[25] Seitz, Charles L., "The Cosmic Cube", Comm. ACM, Vol. 28, No. 1, Jan.
1985, pp. 22-33.

[26] Seitz, Charles L., Athas, William C., Dally, William J., Faucette, Reese,
Martin, Alain J. , Mattisson, Sven, Steele, Craig S., and Su, Wen-King,
Message-Passing Concurrent Computers: Their Architecture and Program-
ming, Addison-Wesley, publication expected 1987.

[27] Stefik, Mark and Bobrow, Daniel G., "Object-Oriented Programming:
Themes and Variations," Al Magazine, Vol. 6, No. 4, Winter 1986, pp. 40-62.

[28] Su, Wen-King, Faucette, Reese, and Seitz, Charles L., C Programmer's Guide
to the Cosmic Cube, Technical Report 5203:TR:85, Dept. of Computer Sci-
ence, California Institute of Technology, September 1985.

[29] Theriault D.G., Issues in the Design and Implementation of Act2, MIT Arti-
ficial Intelligence Laboratory, Technical Report 728, June 1983.

15

Si.

"M ' - , ," - , " - • , - ," . , ," - " , / , " . " -" . ," . " ." - " . , " # " ," ." . " ". " . " . " ," ,, " . " , " "

% - _ -. % "a " _
° .

_- *, _ "- _'. ". " % ' % ' -, . " .. . • , % o % '% -. . * .. % % ". _ _% % " %. N. % % ,,% % m , -

-A.

% %

. SL

